If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+40x+15=0
a = -16; b = 40; c = +15;
Δ = b2-4ac
Δ = 402-4·(-16)·15
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16\sqrt{10}}{2*-16}=\frac{-40-16\sqrt{10}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16\sqrt{10}}{2*-16}=\frac{-40+16\sqrt{10}}{-32} $
| 2(x-1)-5=-4x-1 | | 3(x+2)+4=-5x+42 | | 2x/3+x+80=180 | | c-3=4 | | 0.5(y+3)=0.2y–4 | | 2/3x+x+80=180 | | (3x-20)(100-x)=100 | | 2. 0.5(y+3)=0.2y–4 | | 13=2^n+3^n | | 6m-13/4=-3 | | x–5=-15 | | 14b-6=-2b+26 | | (8.95)+x=23.65 | | O.7x-0.9/0.3-0.7=9 | | 3x-5x-2/2=12 | | y4+8=20 | | 5a-4=7+5a | | 3m+8(1/4)=9 | | 7(k+4)=28+7k | | 3(2x+2)+8=5x+18 | | -5x-39=2(x+5) | | x/12x+7-11=5x-840 | | -4x+42=2(3x-4) | | 4x-8=12(x-2) | | 9^x-3=2*3^x | | x-8/5=2x+3/6 | | 3x-91-87=17x-1618 | | 10+20m=8+20m | | 3^5x+1=1 | | N-4=3n-6 | | x^2+45x-360=0 | | -2(6x+4)=-49 |